Read by other session等待事件

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:Read by other session等待事件

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

今天中午发现福建生产库报负载有点异常,处理思路记录下来:
1、使用top命令查看系统,发现系统负载是比以前要搞(平时都是1以下,今天已经稳定在4左右,总是有部分进城占用cpu比较高,系统cpu等待明显)
1.1)第一反应是有人执行sql导致,抓取占用cpu较高的spid,查询出对应sql,发现都是一些比较简单sql
1.2)查询这些spid的客户端是应用服务器,也就是说不是人为执行,那在一个稳定的系统中,不会出现sql突然改变的原因
2、查询系统是否因为有对象被阻塞导致,查询发现无对象被阻塞
3、查询系统等待事件,发现几十个read by other session等待,都是从一台web的服务器上连接过来
SELECT * FROM v$session WHERE wait_class#<>6;
4、read by other session等待事件比较陌生,幸好伴随有db file sequential read的等待事件,初步怀疑读取数据到内存中等待导致
5、查询资料发现
read by other session Definition: When information is requested from the database, Oracle will first read the data from disk into the database buffer cache. If two or more sessions request the same information, the first session will read the data into the buffer cache while other sessions wait.
In previous versions this wait was classified under the “buffer busy waits” event.
However, in Oracle 10.1 and higher this wait time is now broken out into the “read by other session” wait event. Excessive waits for this event are typically due to several processes repeatedly reading the same blocks, e.g. many sessions scanning the same index or performing full-table scans on the same table. Tuning this issue is a matter of finding and eliminating this contention.
Confio concludes with a summary that “read by other session waits” are very similar to buffer busy waits
When a session waits on the “read by other session” event, it indicates a wait for another session to read the data from disk into the Oracle buffer cache.
If this happens too often the performance of the query or the entire database can suffer. Typically this is caused by contention for “hot” blocks or objects so it is imperative to find out which data is being contended for. Once that is known this document lists several alternative methods for solving the issue.
总结:两个或者多个会话同时需要把硬盘中的对象装载到data buffer中,当其中一个会话把对象装入后,其他会话就处于read by other session等待状态;这个是oracle 10g 从oracle 9i的buffer busy waits中分离出来的,也是需要一种热块现象
6、根据FILE#,BLOCK#查询热块对象
SELECT OWNER, SEGMENT_NAME, SEGMENT_TYPE, TABLESPACE_NAME, A.PARTITION_NAME
FROM DBA_EXTENTS A
WHERE FILE_ID = &FILE_ID
AND &BLOCK_ID BETWEEN BLOCK_ID AND BLOCK_ID + BLOCKS – 1;
7、通过这个对象查询出对应的操作语句
select * from v$sql where upper(sql_text) like ‘%object_name%’;
8、直接查找热点块对象语句

SELECT *
  FROM (SELECT O.OWNER, O.OBJECT_NAME, O.OBJECT_TYPE, SUM(TCH) TOUCHTIME,
          FROM X$BH B, DBA_OBJECTS O
         WHERE B.OBJ = O.DATA_OBJECT_ID
           AND B.TS# > 0
         GROUP BY O.OWNER, O.OBJECT_NAME, O.OBJECT_TYPE
         ORDER BY SUM(TCH) DESC)
 WHERE ROWNUM <= 10
--或者
SELECT E.OWNER, E.SEGMENT_NAME, E.SEGMENT_TYPE
  FROM DBA_EXTENTS E,
       (SELECT *
          FROM (SELECT ADDR, TS#, FILE#, DBARFIL, DBABLK, TCH
                  FROM X$BH
                 ORDER BY TCH DESC)
         WHERE ROWNUM < 11) B
 WHERE E.RELATIVE_FNO = B.DBARFIL
   AND E.BLOCK_ID <= B.DBABLK
   AND E.BLOCK_ID + E.BLOCKS > B.DBABLK;

9、直接查找热点块操作语句

SELECT /*+rule*/
 HASH_VALUE, SQL_TEXT
  FROM V$SQLTEXT
 WHERE (HASH_VALUE, ADDRESS) IN
       (SELECT A.HASH_VALUE, A.ADDRESS
          FROM V$SQLTEXT A,
               (SELECT DISTINCT A.OWNER, A.SEGMENT_NAME, A.SEGMENT_TYPE
                  FROM DBA_EXTENTS A,
                       (SELECT DBARFIL, DBABLK
                          FROM (SELECT DBARFIL, DBABLK
                                  FROM X$BH
                                 ORDER BY TCH DESC)
                         WHERE ROWNUM < 11) B
                 WHERE A.RELATIVE_FNO = B.DBARFIL
                   AND A.BLOCK_ID <= B.DBABLK
                   AND A.BLOCK_ID + A.BLOCKS > B.DBABLK) B
         WHERE A.SQL_TEXT LIKE '%' || B.SEGMENT_NAME || '%'
           AND B.SEGMENT_TYPE = 'TABLE')
 ORDER BY HASH_VALUE, ADDRESS, PIECE;

10、也可以通过awr查询出来相关对象
Segments by Buffer Busy Waits
语句需要通过这些等待对象进行判断
到了1点钟左右,数据库read by other session等待事件消失,数据库恢复正常负载(因为系统还能够承受,所以当时没有采用kill进程的方法)
事后对查询出来的热点块对象和操作语句,已经访问服务器和开发确认的结果为:这个是一个报表功能,但是平时没有人用,所以也没有关注,今天突然被人用了下,导致这个问题发生,他们承诺在升级下个版本中解决这个问题。

DBMS_STATS常用方法(收集oracle信息)

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:DBMS_STATS常用方法(收集oracle信息)

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

–收集数据库信息
EXEC DBMS_STATS.gather_database_stats;
EXEC DBMS_STATS.gather_database_stats(estimate_percent => 15);
–收集schema信息
EXEC DBMS_STATS.gather_schema_stats(‘SCOTT’);
EXEC DBMS_STATS.gather_schema_stats(‘SCOTT’, estimate_percent => 15);
–收集表信息
EXEC DBMS_STATS.gather_table_stats(‘SCOTT’, ‘EMPLOYEES’);
EXEC DBMS_STATS.gather_table_stats(‘SCOTT’, ‘EMPLOYEES’, estimate_percent => 15);
–收集index信息
EXEC DBMS_STATS.gather_index_stats(‘SCOTT’, ‘EMPLOYEES_PK’);
EXEC DBMS_STATS.gather_index_stats(‘SCOTT’, ‘EMPLOYEES_PK’, estimate_percent => 15);
–删除收集信息
EXEC DBMS_STATS.delete_database_stats;
EXEC DBMS_STATS.delete_schema_stats(‘SCOTT’);
EXEC DBMS_STATS.delete_table_stats(‘SCOTT’, ‘EMPLOYEES’);
EXEC DBMS_STATS.delete_index_stats(‘SCOTT’, ‘EMPLOYEES_PK’);
–创建备份收集信息表
begin
dbms_stats.create_stat_table(USER,stattab => ‘STAT_TABLE’);
end;
–备份收集信息
BEGIN
dbms_stats.export_table_stats(USER,tabname => ‘FEI_T’,stattab => ‘STAT_TABLE’);
END;
–删除收集信息
BEGIN
DBMS_STATS.delete_table_stats(USER,tabname => ‘FEI_T’);
END;
–导入收集信息
BEGIN
dbms_stats.IMPORT_TABLE_STATS(USER,’FEI_T’,stattab => ‘STAT_TABLE’);
END;
–说明:
当前用户可以使用user代替用户名
分析表相关对象信息cascade => true

alter table move与shrink space

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:alter table move与shrink space

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

都知道alter table move 或shrink space可以收缩段,用来消除部分行迁移,消除空间碎片,使数据更紧密,但move跟shrink space还是有区别的。
Move会移动高水位,但不会释放申请的空间,是在高水位以下(below HWM)的操作。
而shrink space 同样会移动高水位,但也会释放申请的空间,是在高水位上下(below and above HWM)都有的操作。
Move解决问题:
a. 我们可以使用move将一个table从当前的tablespace上移动到另一个tablespace上:
alter table t move tablespace tablespace_name;
b. 我们还可以用move来改变table已有的block的存储参数,如:
alter table t move storage (initial 30k next 50k);
c.另外,move操作也可以用来解决table中的行迁移的问题。
使用move的一些注意事项:
a. table上的index需要rebuild:
在前面我们讨论过,move操作后,数据的rowid发生了改变,我们知道,index是通过rowid来fetch数据行的,所以,table上的index是必须要rebuild的。
alter index index_name rebuild online;
b.move时对table的锁定
当我们对table进行move操作时,查询v$locked_objects视图可以发现,table上加了exclusive lock
c.关于move时空间使用的问题:
当我们使用alter table move来降低table的HWM时,有一点是需要注意的,这时,当前的tablespace中需要有1倍于table的空闲空间以供使用
Shrink space语法:
alter table shrink space [ | compact | cascade ];
alter table shrink space compcat;
收缩表,但会保持 high water mark;
alter table shrink space;
收缩表,降低 high water mark;
alter table shrink space cascade;
收缩表,降低 high water mark,并且相关索引也要收缩
用shrink有两个前提条件:
1、表必须启用row movement,如:
alter table nonsrt.TAB_EZG_BIZ_UNCONTRACTED enable row movement;
alter table nonsrt.TAB_EZG_BIZ_UNCONTRACTED shrink space;
2、表段所在表空间的段空间管理(segment space management)必须为auto
segment shrink分为两个阶段:
1、数据重组(compact):通过一系列insert、delete操作,将数据尽量排列在段的前面。在这个过程中需要在表上加RX锁,即只在需要移动的行上加锁。由于涉及到rowid的改变,需要enable row movement.同时要disable基于rowid的trigger.这一过程对业务影响比较小。
2、HWM调整:第二阶段是调整HWM位置,释放空闲数据块。此过程需要在表上加X锁,会造成表上的所有DML语句阻塞。在业务特别繁忙的系统上可能造成比较大的影响。
注意:shrink space语句两个阶段都执行。
shrink space compact只执行第一个阶段。
如果系统业务比较繁忙,可以先执行shrink space compact重组数据,然后在业务不忙的时候再执行shrink space降低HWM释放空闲数据块。

V$SESSION_WAIT分析

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:V$SESSION_WAIT分析

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

V$SESSION_WAIT displays the current or last wait for each session.
1、SID
Session identifier; maps to V$SESSION.SID
2、EVENT
session当前等待的事件,或者最后一次等待事件
3、WAIT_TIME
If the session is currently waiting, then the value is 0. If the session is not in a wait, then the value is as follows:
Value>0 – Value is the duration of the last wait in hundredths of a second
Value=-1 – Duration of the last wait was less than a hundredth of a second
Value=-2 – Parameter TIMED_STATISTICS was set to false
4、SEQ#
session等待事件将触发其值自增长
5、P1, P2, P3
等待事件中等待的详细资料
6、P1TEXT, P2TEXT, P3TEXT
解释说明p1,p2,p3事件
7、State
Wait state:
WAITING – Session is currently waiting
WAITED UNKNOWN TIME – Duration of the last wait is unknown; this is the value when the parameter TIMED_STATISTICS is set to false
WAITED SHORT TIME – Last wait was less than a hundredth of a second
WAITED KNOWN TIME – Duration of the last wait is specified in the WAIT_TIME column
8、SECONDS_IN_WAIT
If WAIT_TIME = 0, then SECONDS_IN_WAIT is the seconds spent in the current wait condition.
If WAIT_TIME > 0, then SECONDS_IN_WAIT is the seconds since the start of the last wait, and SECONDS_IN_WAIT – WAIT_TIME / 100 is the active seconds since the last wait ended.
9、Wait_time和Second_in_wait字段值与state相关
如果state值为Waiting,那么wait_time值无用。Second_in_wait值是实际的等待时间(单位:秒)。
如果state值为Wait unknow time,那么wait_time值和Second_in_wait值都无用。
如果state值为Wait short time,那么wait_time值和Second_in_wait值都无用。
如果state值为Waiting known time,那么wait_time值就是实际等待时间(单位:秒),Second_in_wait值无用。
10、应用p1,p2,p3进行等待事件的分析
v$session_wait视图的列代表的缓冲区忙等待事件如下:
P1—与等待相关的数据文件的全部文件数量。
P2—P1中的数据文件的块数量。
P3—描述等待产生原因的代码。
例:select p1 “File #”, p2 “Block #”, p3 “Reason Code”
  from v$session_wait
  where event = ‘buffer busy waits’;
如果以上查询的结果显示一个块在忙等待,以下的查询将显示这一块的名称和类型:
select owner, segment_name, segment_type
 from dba_extents
 where file_id = &P1 and &P2 between block_id and block_id + blocks -1;
我们也可以查询dba_data_files以确定等待的文件的file_name,方法是使用v$session_wait中的P1。
从v$session_wait中查询P3(原因编码)的值可以知道session等待的原因。原因编码的范围从0到300,下列为部分编码所代表的事项:
0 块被读入缓冲区。
100 我们想要NEW(创建)一个块,但这一块当前被另一session读入。
110 我们想将当前块设为共享,但这一块被另一session读入,所以我们必须等待read()结束。
120 我们想获得当前的块,但其他人已经将这一块读入缓冲区,所以我们只能等待他人的读入结束。
130 块被另一session读入,而且没有找到其它协调的块,所以我们必须等待读的结束。缓冲区死锁后这种情况也有可能产生。所以必须读入块的CR。
200 我们想新创建一个block,但其他人在使用,所以我们只好等待他人使用结束。
210 Session想读入SCUR或XCUR中的块,如果块交换或者session处于非连续的TX模式,所以等待可能需要很长的时间。
220 在缓冲区查询一个块的当前版本,但有人以不合法的模式使用这一块,所以我们只能等待。
230 以CR/CRX方式获得一个块,但块中的更改开始并且没有结束。
231 CR/CRX扫描找到当前块,但块中的更改开始并且没有结束

Oracle AWR报告日常分析–SQL语句

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:Oracle AWR报告日常分析–SQL语句

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

1 SQL ordered by Elapsed Time
记录了执行总和时间的TOP SQL(请注意是监控范围内该SQL的执行时间总和,而不是单次SQL执行时间 Elapsed Time = CPU Time + Wait Time)。
Elapsed Time(S): SQL语句执行用总时长,此排序就是按照这个字段进行的。注意该时间不是单个SQL跑的时间,而是监控范围内SQL执行次数的总和时间。单位时间为秒。Elapsed Time = CPU Time + Wait Time
CPU Time(s): 为SQL语句执行时CPU占用时间总时长,此时间会小于等于Elapsed Time时间。单位时间为秒。
Executions: SQL语句在监控范围内的执行次数总计。
Elap per Exec(s): 执行一次SQL的平均时间。单位时间为秒。
% Total DB Time: 为SQL的Elapsed Time时间占数据库总时间的百分比。
SQL ID: SQL语句的ID编号,点击之后就能导航到下边的SQL详细列表中,点击IE的返回可以回到当前SQL ID的地方。
SQL Module: 显示该SQL是用什么方式连接到数据库执行的,如果是用SQL*Plus或者PL/SQL链接上来的那基本上都是有人在调试程序。一般用前台应用链接过来执行的sql该位置为空。
SQL Text: 简单的sql提示,详细的需要点击SQL ID。
2 SQL ordered by CPU Time:
记录了执行占CPU时间总和时间最长的TOP SQL(请注意是监控范围内该SQL的执行占CPU时间总和,而不是单次SQL执行时间)。
3 SQL ordered by Gets:
记录了执行占总buffer gets(逻辑IO)的TOP SQL(请注意是监控范围内该SQL的执行占Gets总和,而不是单次SQL执行所占的Gets)。
4 SQL ordered by Reads:
记录了执行占总磁盘物理读(物理IO)的TOP SQL(请注意是监控范围内该SQL的执行占磁盘物理读总和,而不是单次SQL执行所占的磁盘物理读)。
5 SQL ordered by Executions:
记录了按照SQL的执行次数排序的TOP SQL。该排序可以看出监控范围内的SQL执行次数。
6 SQL ordered by Parse Calls:
记录了SQL的软解析次数的TOP SQL。说到软解析(soft prase)和硬解析(hard prase),就不能不说一下Oracle对sql的处理过程。
7 SQL ordered by Sharable Memory:
记录了SQL占用library cache的大小的TOP SQL。Sharable Mem (b):占用library cache的大小,单位是byte。
8 SQL ordered by Version Count:
记录了SQL的打开子游标的TOP SQL。
9 SQL ordered by Cluster Wait Time:
记录了集群的等待时间的TOP SQL

Oracle AWR入门(2)

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:Oracle AWR入门(2)

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

1.ASH占用的内存大小
ASH的采集信息保存在内存中,在旧的信息被采样到AWR中后,可被新采集的信息覆盖,重启oracle后该信息被清除。分配给ASH的内存大小可以查询到:
SQL> select pool, name, bytes/1024/1024 From v$sgastat where name like ‘%ASH %’;
POOL NAME BYTES/1024/1024
———— ————————– —————
shared pool ASH buffers 4
2.mmon进程与mmnl进程
2.1)快照由一个称为 MMON 的新的后台进程(及其从进程)以及MMNL后台进程自动地每隔固定时间采样一次。我们先来看一下10g的概念指南中对这两个新增加的后台进程的介绍:
MMON进程负责执行多种和管理相关(manageability-related)的后台任务
例如:当某个测量值(metrics)超过了预设的限定值(threshold value)后提交警告,创建新的 MMON 隶属进程(MMON slave process)来进行快照(snapshot),捕获最近修改过的 SQL 对象的统计信息
2.2)MMNL进程负责执行轻量级的且频率较高的和可管理性相关的后台任务
例如:捕获会话历史信息,测量值计算等。
2.3)AWR的采样工作默认是由MMON进程每个1小时执行一次,ASH信息同样会被采样写出到AWR负载库中。虽然ASH buffer被设计为保留1小时的信息,但很多时候这个内存是不够的,当ASH buffer写满后,另外一个后台进程MMNL将会主动将ASH信息写出。
3.SYSAUX表空间
AWR 使用几个表来存储采集的统计数据,所有的表都存储在新的名称为 SYSAUX 的特定表空间中的 SYS 模式下,并且以 WRM$_* 和 WRH$_* 的格式命名。前一种类型存储元数据信息(如检查的数据库和采集的快照),后一种类型保存实际采集的统计数据。H 代表“历史数据 (historical)”而 M 代表“元数据 (metadata)”
使用sql语句: select table_name from dba_tables where table_name like ‘WRM$%’ or table_name like ‘WRH$%’;查询
当SYSAUX表空间满后,AWR将自动覆盖掉旧的信息,并在警告日志中记录一条相关信息:
ORA-1688: unable to extend table SYS.WRH$_ACTIVE_SESSION_HISTORY partition WRH$_ACTIVE_3533490838_1522 by 128 in tablespace SYSAUX
4.采样频率和保留时间
可以通过查询视图dba_hist_wr_control或(wrm$_wr_control)来查询AWR的采样频率和保留时间。默认为每1小时采样一次,采样信息保留时间为(7/10g|8/11g)天。
SQL> select * from dba_hist_wr_control;
DBID SNAP_INTERVAL RETENTION TOPNSQL
———- ——————– ——————– ———-
3393548168 +00000 00:30:00.0 +00010 00:00:00.0 DEFAULT
或者
SQL> select DBID, SNAP_INTERVAL, SNAPINT_NUM, RETENTION from wrm$_wr_control;
DBID SNAP_INTERVAL SNAPINT_NUM RETENTION
———- ——————– ———– ——————–
3393548168 +00000 00:30:00.0 1800 +00010 00:00:00.0
修改采集频率和保存时间: exec dbms_workload_repository.modify_snapshot_settings(interval=>30, retention=>5*24*60);
Note:输入的retention参数值不能被目前库中保存的数据的范围小(如果要减少保存时间,需要先删除历史数据)
5.采样数据量
由于数据量巨大,把所有ASH数据写到磁盘上是不可接受的。一般是在写到磁盘的时候过滤这个数据,写出的数据占采样数据的10%,写出时通过direct-path insert完成,尽量减少日志生成,从而最小化数据库性能的影响。
6.初始化参数statistics_level
AWR的行为受到参数STATISTICS_LEVEL的影响。这个参数有三个值:
BASIC:awr统计的计算和衍生值关闭.只收集少量的数据库统计信息.
TYPICAL:默认值.只有部分的统计收集.他们代表需要的典型监控oracle数据库的行为.
ALL : 所有可能的统计都被捕捉. 并且有操作系统的一些信息.这个级别的捕捉应该在很少的情况下,比如你要更多的sql诊断信息的时候才使用.
7.快照管理
7.1)执行
exec dbms_workload_repository.create_snapshot();
7.2)查询
select * from wrh$_active_session_history
7.3)删除
exec dbms_workload_repository.drop_snapshot_range(low_snap_id => 90, high_snap_id => 96, dbid => 1160732652);
8. 基线管理
8.1)创建baseline,保存这些数据用于将来分析和比较
exec dbms_workload_repository.create_baseline(start_snap_id => 1003, end_snap_id => 1013, ‘apply_interest_1’);
8.2)删除baseline
exec DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE(baseline_name => ‘apply_interest_1’, cascade => FALSE);

Oracle AWR入门(1)

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:Oracle AWR入门(1)

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

一、ASH
若是一个普通的会话(我是指没有大量地耗费资源),则对于性能调整来说无足轻重。但若该会话在活动时大量占用了资源(比如:CPU,内存,I/O等),该会话信息的丢失,将无法评测当时的系统瓶颈究竟是什么。令DBA高兴的是,oracle10g中保留下了v$session_wait中的这些信息。
在10g中新出现了一个视图:v$session_wait_history。这个视图保存了每个活动session在v$session_wait中最近10次的等待事件。但这对于一段时期内的数据库性能状况的监测是远远不够的,为了解决这个问题,在10g中还新添加了一个视图:v$active_session_history。这就是ASH(active session history)。
典型的情况下,为了诊断当前数据库的状态,需要最近的五到十分钟的详细信息。然而,由于记录session的活动信息是很费时间和空间的,ASH采用的策略是:保存处于等待状态的活动session的信息,每秒从v$session_wait中采样一次,并将采样信息保存在内存中。

二、AWR

ASH的采样数据是保存在内存中。而分配给ASH的内存空间是有限的,当所分配空间占满后,旧的记录就会被覆盖掉;而且数据库重启后,所有的这些ASH信息都会消失。这样,对于长期检测oracle的性能是不可能的。在Oracle10g中,提供了永久保留ASH信息的方法,这就是AWR(auto workload repository)。
由于全部保存ASH中的信息是非常耗费时间和空间的,AWR采用的策略是:每小时对v$active_session_history进行采样一次,并将信息保存到磁盘中,并且保留7天,7天后旧的记录才会被覆盖。这些采样信息被保存在视图wrh$_active_session_history中。而这个采样频率(1小时)和保留时间(7天)是可以根据实际情况进行调整的,这就给DBA们提供了更加有效的系统监测工具。
AWR永久地保存系统的性能诊断信息,由SYS用户拥有。一段时间后,你可能想清除掉这些信息;有时候为了性能诊断,你可能需要自己定义采样频率来获取系统快照信息。Oracle 10g在包dbms_workload_repository中提供了很多过程,通过这些过程,你可以管理快照并设定基线(baselines)。
其实,AWR记录的信息不仅是ASH,还可以收集到数据库运行的各方面统计信息和等待信息,用以诊断分析。
AWR的采样方式是,以固定的时间间隔为其所有重要的统计信息和负载信息执行一次采样,并将采样信息保存在AWR中。
可以这样说:ASH中的信息被保存到了AWR中的视图wrh$_active_session_history中。ASH是AWR的真子集。
三、总结
这样,我们就知道了ASH和AWR产生的原因和功能。ASH保存了系统最新的处于等待的会话记录,可以用来诊断数据库的当前状态;而AWR中的信息最长可能有1小时的延迟,所以其采样信息并不能用于诊断数据库的当前状态,但可以用来作为一段时期内数据库性能调整的参考。
对于这些视图间的继承关系图:

其中视图dba_hist_active_sess_history是wrh$_active_session_history和其他几个视图的联合展现,通常通过这个视图进行历史数据的访问。

oracle 跟踪会话

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:oracle 跟踪会话

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

一、跟踪自己的会话或者是别人的会话
1、跟踪自己的会话很简单
Alter session set sql_trace true|false;
或者
exec dbms_session.set_sql_trace(true/false);
2、如果跟踪别人的会话,需要调用一个包
exec dbms_system.set_sql_trace_in_session(sid,serial#,true|false);
二、整个数据库系统跟踪
1、开启会话跟踪
alter system set events
‘10046 trace name context forever,level 1’;
2、关闭会话跟踪
alter system set events
‘10046 trace name context off’;
3、跟踪会话级别
level 1:跟踪SQL语句,等于sql_trace=true
level 4:包括变量的详细信息
level 8:包括等待事件
level 12:包括绑定变量与等待事件
4、说明:在11g中已经不推荐使用
alter system set sql_trace=true;
alter system set sql_trace=false;
三、查看跟踪文件
1、查看跟踪文件位置(当前会话)

select d.value||'/'||lower(rtrim(i.instance,chr(0)))||'_ora_'||p.spid||'.trc' trace_file_name from
(select p.spid from v$mystat m, v$session s,v$process p where m.statistic# = 1 and s.sid = m.sid and p.addr = s.paddr ) p,
(select t.instance from v$thread t,v$parameter v where v.name = 'thread' and(v.value = 0 or t.thread# = to_number(v.value))) i,
(select value from v$parameter where name = 'user_dump_dest') d;

2、tkprof格式化跟踪文件
tkprof trace_file_name out_file

oracle 中如何定位重要(消耗资源多)的SQL

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:oracle 中如何定位重要(消耗资源多)的SQL

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

1、查看值得怀疑的SQL

select substr(to_char(s.pct,'99.00'),2)||'%'load,
       s.executions executes,
       p.sql_text
from(select address,
               disk_reads,
               executions,
               pct,
               rank()over(order by disk_reads desc) ranking
         from(select address,
                       disk_reads,
                       executions,
                      100*ratio_to_report(disk_reads)over() pct
                 from sys.v_$sql
                where command_type!=47)
        where disk_reads>50*executions) s,
       sys.v_$sqltext p
where s.ranking<=5
  and p.address=s.address
order by 1, s.address, p.piece;

2、查看消耗内存多的sql

select b.username,
       a. buffer_gets,
       a.executions,
       a.disk_reads / decode(a.executions, 0, 1, a.executions),
       a.sql_text SQL
  from v$sqlarea a, dba_users b
 where a.parsing_user_id = b.user_id
   and a.disk_reads > 10000
 order by disk_reads desc;

3、查看逻辑读多的SQL

select*
from(select buffer_gets, sql_text
         from v$sqlarea
        where buffer_gets>500000
        order by buffer_gets desc)
where rownum<=30;

4、查看执行次数多的SQL

select sql_text, executions
  from (select sql_text, executions from v$sqlarea order by executions desc)
 where rownum < 81;

5、查看读硬盘多的SQL

select sql_text, disk_reads
from(select sql_text, disk_reads from v$sqlarea order by disk_reads desc)
where rownum<21;

6、查看排序多的SQL

select sql_text, sorts
from(select sql_text, sorts from v$sqlarea order by sorts desc)
where rownum<21;

7、分析的次数太多,执行的次数太少,要用绑变量的方法来写sql

select substr(sql_text, 1, 80) "sql", count(*), sum(executions) "totexecs"
  from v$sqlarea
 where executions < 5
 group by substr(sql_text, 1, 80)
having count(*) > 30
 order by 2;

Oracle 等待事件

联系:手机/微信(+86 17813235971) QQ(107644445)

标题:Oracle 等待事件

作者:惜分飞©版权所有[未经本人同意,不得以任何形式转载,否则有进一步追究法律责任的权利.]

等待事件的源起
等待事件的概念大概是从ORACLE 7.0.12中引入的,大致有100个等待事件。在ORACLE 8.0中这个数目增大到了大约150个,在ORACLE 8I中大约有220个事件,在ORACLE 9IR2中大约有400个等待事件,而在最近ORACLE 10GR2中,大约有874个等待事件。
虽然不同版本和组件安装可能会有不同数目的等待事件,但是这些等待事件都可以通过查询V$EVENT_NAME视图获得:
SQL> select * from v$version;
BANNER
—————————————————————-
Oracle Database 10g Enterprise Edition Release 10.2.0.1.0 – Prod
PL/SQL Release 10.2.0.1.0 – Production
CORE    10.2.0.1.0      Production
TNS for 32-bit Windows: Version 10.2.0.1.0 – Production
NLSRTL Version 10.2.0.1.0 – Production
SQL> select count(*) from v$event_name;
COUNT(*)
———-
872
ORACLE的等待事件,主要可以分为两类,即空闲(IDLE)等待事件和非空闲(NON-IDLE)等待事件。
1). 空闲等待事件指ORACLE正等待某种工作,在诊断和优化数据库的时候,不用过多注意这部分事件。
2). 非空闲等待事件专门针对ORACLE的活动,指数据库任务或应用运行过程中发生的等待,这些等待事件是在调整数据库的时候需要关注与研究的。
下面来看一下ORACLE 10GR2中主要分类及各类等待事件的个数:
select wait_class#,wait_class_id,wait_class,count(*) as “count”
  from v$event_name
  group by wait_class#,wait_class_id,wait_class
  order by wait_class#;
WAIT_CLASS# WAIT_CLASS_ID WAIT_CLASS                  count
———– ————- —————————— ———-
0    1893977003 Other                                 588
1    4217450380 Application                            12
2    3290255840 Configuration                          23
3    4166625743 Administrative                         46
4    3875070507 Concurrency                            24
5    3386400367 Commit                                  1
6    2723168908 Idle                                   62
7    2000153315 Network                                26
8    1740759767 User I/O                               17
9    4108307767 System I/O                             24
10    2396326234 Scheduler                               2
11    3871361733 Cluster                                47
12 rows selected.
常见的空闲事件有:
• dispatcher timer
• lock element cleanup
• Null event
• parallel query dequeue wait
• parallel query idle wait – Slaves
• pipe get
• PL/SQL lock timer
• pmon timer- pmon
• rdbms ipc message
• slave wait
• smon timer
• SQL*Net break/reset to client
• SQL*Net message from client
• SQL*Net message to client
• SQL*Net more data to client
• virtual circuit status
• client message
一些常见的非空闲等待事件有:
• db file scattered read
• db file sequential read
• buffer busy waits
• free buffer waits
• enqueue
• latch free
• log file parallel write
• log file sync
几个视图的总结:
V$SESSION 代表数据库活动的开始,视为源起。
V$SESSION_WAIT 视图用以实时记录活动SESSION的等待情况,是当前信息。
V$SESSION_WAIT_HISTORY 是对V$SESSION_WAIT的简单增强,记录活动SESSION的最近10次等待。
V$ACTIVE_SESSION_HISTORY 是ASH的核心,用以记录活动SESSION的历史等待信息,每秒采样一次,这部分内容记录在内存中,期望值是记录一个小时的内容。
WRH#_ACTIVE_SESSION_HISTORY 是V$ACTIVE_SESSION_HISTORY在AWR的存储地。
V$ACTIVE_SESSION_HISTORY中的信息会被定期(每小时一次)的刷新到负载库中,并缺省保留一个星期用于分析。
DBA_HIST_ACTIVE_SESS_HISTORY视图是WRH#_ACTIVE_SESSION_HISTORY视图和其他几个视图的联合展现,通常通过这个视图进行历史数据的访问。
V$SYSTEM_EVENT 由于V$SESSION记录的是动态信息,和SESSION的生命周期相关,而并不记录历史信息,所以ORACLE提供视图V$SYSTEM_EVENT来记录数据库自启动以来所有等待事件的汇总信息。通过这个视图,用户可以迅速获得数据库运行的总体概况。
V$SQLTEXT 当数据库出现瓶颈时,通常可以从V$SESSION_WAIT找到那些正在等待资源的SESSION,通过SESSION的SID,联合V$SESSION和V$SQLTEXT视图就可以捕获这些SESSION正在执行的SQL语句。
重要等待事件
1. Db file sequential read(数据文件顺序读取)
Db file sequential read是个非常常见的I/O相关的等待事件,通常显示与单个数据块相关的读取操作,在大多数情况下,读取一个索引块或者通过索引读取一个数据块时,都会记录这个等待。
这个等待事件有3个参数P1、P2、P3,其中P1代表Oracle要读取的文件的绝对文件号,P2代表Oracle从这个文件中开始读取的起始数据块块号,P3代表读取的Block数量,通常这个值为1,表明是单个Block被读取。
SQL> select name,parameter1,parameter2,parameter3 from v$event_name where name=’db file sequential read’;
NAME                PARAMETER1 PARAMETER2 PARAMETER3
—————————— ———- ———- ———-
db file sequential read      file#      block#     blocks
如果这个等待事件比较显著,可能表示在多表连接中,表的连接顺序存在问题,可能没有正确的使用驱动表;或者可能索引的使用存在问题,并非索引总是最好的选择。
在大多数情况下,通过索引可以更为快速地获取记录,所以对于一个编码规范、调整良好的数据库,这个等待事件很大通常是正常的。但是在很多情况下,使用索引并不是最佳的选择,比如读取较大表中大量的数据,全表扫描可能会明显快于索引扫描,所以在开发中就应该注意,对于这样的查询应该避免使用索引扫描。
从Oracle 9iR2开始,Oracle引入了段级统计信息收集的新特性,收集的统计信息共有11类:
Select * from v$segstat_name;
在Oracle 10gR2中,这类统计信息增加为15个。
对于CBO模式下的数据库,应当及时收集统计信息,使SQL可以选择正确的执行计划,避免因为统计信息陈旧而导致的执行错误等。
2. Db file scattered read(数据文件离散读取)
SQL> select * from v$event_name where name=’db file scattered read’;
EVENT#   EVENT_ID NAME      PARAMETER1 PARAMETER2 PARAMETER3
———- ———- ————————- ———- ———- ———-
188 506183215 db file scattered read    file#      block#     blocks
从V$EVENT_NAME视图可以看到,该事件有3个参数,分别代表文件号、起始数据块号、数据块的数量。
起始数据块号加上数据块的数量,这意味着Oracle session正在等待多块连续读操作的完成。这个操作可能与全表扫描(Full table scan)或者快速全索引扫描(Index Fast Full Scan)的连续读取相关。根据经验,通常大量的db file scattered read等待可能意味着应用问题或者索引缺失。
在实际环境的诊断过程中,可以通过v$session_wait视图发现session的等待,再结合其他视图找到存在问题的SQL等根本原因,从而从根本上解决问题。当这个等待事件比较显著时,也可结合v$session_longops动态性能视图来进行诊断,该视图记录了长时间(运行时间超过6秒的)运行的事务。
从Oracle 9i开始,Oracle新增加了一个视图V$SQL_PLAN用于记录当前系统Library Cache中SQL语句的执行计划,可以通过这个视图找到存在问题的SQL语句。
通过V$SQL_PLAN视图,可以获得大量有用的信息:
获得全表扫描的对象
Select distinct object_name,object_owner from v$sql_plan p
Where p.operation=’TABLE ACCESS’ and p.options=’FULL’
and object_owner=’CHF’;
获得全索引扫描的对象
Select distinct object_name,object_owner from v$sql_plan p 
Where p.operation=’INDEX’ and p.options=’FULL SCAN’ 
and object_owner=’CHF’;
通过V$SQL_PLAN和V$SQLTEXT联合,获得全表扫描的SQL语句
Select sql_text from v$sqltext t,v$sql_plan p 
Where t.hash_value=p.hash_value  And p.operation=’TABLE ACCESS’ 
And p.options=’FULL’ Order by p.hash_value,t.piece;
3. Direct path read/write(直接路径读/写)
直接路径读通常发生在Oracle直接读取数据到PGA时,这个读取不需要经过SGA。直接路径读等待事件的3个参数分别是:file#(指绝对文件号)、first block#和block数量。
这类读取通常在以下情况被使用:
磁盘排序IO操作
并行查询从属进程
预读操作
最常见的是第一种情况。在DSS系统中,存在大量的Direct path read是很正常的,但是在OLTP系统中,通常显著的直接路径读都意味着系统应用存在问题,从而导致大量的磁盘排序读取操作。
直接路径写通常发生在Oracle直接从PGA写数据到数据文件或临时文件,这个写操作可以绕过SGA。直接路径写等待事件的3个参数分别是:file#(指绝对文件号)、first block#和block数量。
这类读取通常在以下情况被使用:
直接路径加载
并行DML操作
磁盘排序
对未缓存的“LOB”段的写入,随后会记录为direct path write(lob)等待
最常见的直接路径写,多数因为磁盘排序导致。对于这一写入等待,应该找到I/O操作最为频繁的数据文件(如果有过多的排序操作,很有可能就是临时文件),分散负载,加快其写入操作。
如果系统存在过多的磁盘排序,会导致临时表空间操作频繁,对于这种情况,可以考虑为不同用户分配不同的临时表空间,使用多个临时文件,写入不同磁盘或者裸设备,从而降低竞争提高性能。
日志文件相关等待
SQL> select name from v$event_name where name like ‘%log%’;
NAME
—————————————————————-
log switch/archive
log file sequential read
log file single write
log file parallel write
log buffer space
log file switch (checkpoint incomplete)
log file switch (archiving needed)
log file switch (clearing log file)
switch logfile command
log file switch completion
log file sync
STREAMS capture process waiting for archive log
已选择12行。
4. Log File Switch(日志文件切换)
Log File Switch当日志文件发生切换时出现,在数据库进行日志切换时,LGWR需要关闭当前日志组,切换并打开下一个日志组,在这个切换过程中,数据库的所有DML操作都处于停顿状态,直至这个切换完成。
Log File Switch主要包含两个子事件:
1. log file switch(achiving needed),即日志切换(需要归档)
这个等待事件出现时通常是因为日志组循环写满以后,在需要覆盖先前日志时,发现日志归档尚未完成,出现该等待。由于Redo不能写出,该等待出现时,数据库将陷于停顿状态。
出现该等待,可能表示I/O存在问题、归档进程写出缓慢,也有可能是日志组设置不合理等原因导致。针对不同原因,可以考虑采用的解决方法有:
可以考虑增大日志文件和增加日志组;
移动归档文件到快速磁盘;
调整log_archive_max_processes参数等;
2. log file switch(checkpoint incomplete),即日志切换(检查电未完成)
当所有的日志组都写满之后。LGWR试图覆盖某个日志文件,如果这时数据库没有完成写出由这个日志文件所保护的脏数据时(检查点未完成),该等待事件出现。该等待出现时,数据库同样将陷于停顿状态。
该等待事件通常表示DBWR写出速度太慢或者I/O存在问题。为解决该问题,可能需要考虑增加额外的DBWR或者增加日志组或日志文件大小。
5. Log File Sync(日志文件同步)
当一个用户提交或回滚数据时,LGWR将会话期的重做由日志缓冲区写入到重做日志中,LGWR完成任务以后会通知用户进程。日志文件同步过程(Log File Sync)必须等待这一过程成功完成。对于回滚操作,该事件记录从用户发出Rollback命令道回滚完成的时间。
如果该等待过多,可能说明LGWR的写出效率低下,或者系统提交过于频繁。针对该问题,可以通过log file parallel write等待事件或User Commits、User Rollback等统计信息来观察提交或回滚次数。
可能的解决方案主要有:
1). 提高LGWR性能,尽量使用快速磁盘,不要把redo log file存放在RAID5的磁盘上;RAID5 对于频繁写入得系统会带来较大的性能损失,可以考虑使用文件系统直接输入/输出,或者使用裸设备(raw device),这样可以获得写入的性能提高。
2). 使用批量提交;
3). 适当使用NOLOGGING/UNRECOVERABLE等选项
6. Log File Single Write
该事件仅与写日志文件头块相关,通常发生在增加新的组成员和增进序列号(Log switch)时。头块写单个进行,因为头块的部分信息是文件号,每个文件不同。更新日志文件头这个操作在后台完成,一般很少出现等待,无需太多关注。
7. Log File Parallel Write
从Log Buffer写Redo记录到日志文件,主要指常规写操作(相对于Log File Sync)。如果Log Group存在多个组成员,当Flush Log Buffer时,写操作是并行的,这时候此等待事件可能出现。
尽管这个写操作并行处理,直到所有I/O 操作完成该写操作才会完成(如果你的磁盘支持异步IO或者使用IO SLAVE,那么即使只有一个redo log file member,也有可能出现此等待)。
这个参数和log file sync 时间相比较可以用来衡量log file 的写入成本。通常称为同步成本率。
8. Log Buffer Space(日志缓冲空间)
当数据库产生日志的速度比LGWR的写出速度快,或者当日志切换太慢时,就会发生这种等待。这个等待出现时,通常表明Redo log buffer过小,为解决这个问题,可以考虑增大日志文件的大小或者增加日志缓冲器的大小。
另一个可能的原因是磁盘I/O存在瓶颈,可以考虑使用写入速度更快的磁盘。在允许的条件下设置,可以考虑使用裸设备来存放日志文件,提高写入效率。在一般的系统中,最低的标准是,不要把日志文件和数据文件存放在一起,因为通常日志文件只写不读,分离存放可以获得性能提升,尽量使用RAID10而不是RAID5磁盘来存储日志文件。
9. Enqueue(队列等待)
Enqueue是一种保护共享资源的锁定机制。该锁定机制保护共享资源,以避免因并发操作而损坏数据,比如通过锁定保护一行记录,避免多个用户同时更新。Enqueue采用排队机制,即FIFO(先进先出)来控制资源的使用。
Enqueue是一组锁定事件的集合,如果数据库中这个等待事件比较显著,还需要进一步追踪是哪一个类别的锁定引发了数据库等待。
SQL> select name,wait_class from v$event_name where name like ‘%enq%’ and rownum<11;
–这里记录很多 只去取出了前10条而已
NAME                      WAIT_CLASS
————————- ——————————————————
enq: PW – flush prewarm b Application
enq: RO – contention      Application
enq: RO – fast object reu Application
enq: KO – fast object che Application
enq: MV – datafile move   Administrative
enq: TM – contention      Application
enq: ST – contention      Configuration
enq: TX – row lock conten Application
enq: TX – allocate ITL en Configuration
enq: TX – index contentio Concurrency
已选择10行。
10. Latch Free(闩锁释放)
Latch Free通常被称为闩锁释放,这个名称常常引起误解,实际上应该在前面加上一个”等待(WAIT)”,当数据库出现这个等待时,说明有进程正在等待某个Latch被释放,也就是Waiting Latch Free。
Latch是一种低级排队(串行)机制,用于保护SGA中共享内存结构。Latch就像是一种快速的被获取和释放的内存锁,用于防止共享内存结构被多个用户同时访问。
如果latch不可用,就会记录latch释放失败(latch free miss )。有两种与闩有关的类型:
1) 立刻。
2) 可以等待。
假如一个进程试图在立刻模式下获得闩,而该闩已经被另外一个进程所持有,如果该闩不能立可用的话,那么该进程就不会为获得该闩而等待。它将继续执行另一个操作。
大多数latch问题都与以下操作相关:
没有很好的是用绑定变量(library cache latch)、重作生成问题(redo allocation latch)、缓冲存储竞争问题(cache buffers LRU chain),以及buffer cache中的存在”热点”块(cache buffers chain)。
通常我们说,如果想设计一个失败的系统,不考虑绑定变量,这一个条件就够了,对于异构性强的系统,不使用绑定变量的后果是极其严重的。
另外也有一些latch等待与bug有关,应当关注Metalink相关bug的公布及补丁的发布。当latch miss ratios大于0.5%时,就应当研究这一问题。
Oracle的latch机制是竞争,其处理类似于网络里的CSMA/CD,所有用户进程争夺latch, 对于愿意等待类型(willing-to-wait)的latch,如果一个进程在第一次尝试中没有获得latch,那么它会等待并且再尝试一次,如果经过_spin_count次争夺不能获得latch, 然后该进程转入睡眠状态,持续一段指定长度的时间,然后再次醒来,按顺序重复以前的步骤.在8i/9i中默认值是_spin_count=2000。
如果SQL语句不能调整,在8.1.6版本以上,Oracle提供了一个新的初始化参数: CURSOR_SHARING可以通过设置CURSOR_SHARING = force 在服务器端强制绑定变量。设置该参数可能会带来一定的副作用,对于Java的程序,有相关的bug,具体应用应该关注Metalink的bug公告。
11. Free Buffer-释放缓冲区
这个等待事件表明系统正在等待内存中的可用空间,这说明当前Buffer 中已经没有Free 的内存空间。如果应用设计良好,SQL 书写规范,充分绑定变量,那这种等待可能说明Buffer Cache 设置的偏小,你可能需要增大DB_BUFFER_CACHE。
Free Buffer 等待可能说明DBWR 的写出速度不够,或者磁盘存在严重的竞争,可以需要考虑增加检查点、使用更多的DBWR 进程,或者增加物理磁盘的数量,分散负载,平衡IO。
12. Buffer Busy-缓冲区忙
该等待事件表示正在等待一个以unshareable方式使用的缓冲区,或者表示当前正在被读入buffer cache。一般来说Buffer Busy Wait不应大于1%。检查缓冲等待统计部分(或V$WAITSTAT),看一下等待是否位于段头(Segment Header)。如果是,可以考虑增加自由列表(freelist,对于Oracle8i DMT)或者增加freelist groups(在很多时候这个调整是立竿见影的,在8.1.6之前,这个freelists参数不能动态修改;在8.1.6及以后版本,动态修改feelists需要设置COMPATIBLE至少为8.1.6).
如果这一等待位于undo header,可以通过增加回滚段(rollback segment)来解决缓冲区的问题。如果等待位于undo block上,我们可能需要检查相关应用,适当减少大规模的一致性读取,或者降低一致性读取(consistent read)的表中的数据密度或者增大DB_CACHE_SIZE。
如果等待处于data block,可以考虑将频繁并发访问的表或数据移到另一数据块或者进行更大范围的分布(可以增加pctfree值 ,扩大数据分布,减少竞争),以避开这个”热点”数据块,或者可以考虑增加表中的自由列表或使用本地化管理的表空间(Locally Managed Tablespaces)。
如果等待处于索引块,应该考虑重建索引、分割索引或使用反向键索引。为了防止与数据块相关的缓冲忙等待,也可以使用较小的块:在这种情况下,单个块中的记录就较少,所以这个块就不是那么”繁忙”;或者可以设置更大的pctfree,使数据扩大物理分布,减少记录间的热点竞争。
在执行DML (insert/update/ delete)时,Oracle向数据块中写入信息,对于多事务并发访问的数据表,关于ITL的竞争和等待可能出现,为了减少这个等待,可以增加initrans,使用多个ITL槽。在Oracle9i 中,引入了一个新概念:ASSM(Segment Space Management Auto)。通过这个新特性Oracle 使用位图来管理空间使用。
ASSM 结合LMT 彻底改变了Oracle 的存储机制,位图freelist 能够减轻缓冲区忙等待(buffer busy wait),这个问题在Oracle9i 以前的版本里曾是一个严重的问题。
Oracle 宣称ASSM 显著地提高了DML 并发操作的性能,因为(同一个)位图的不同部分可以被同时使用,这样就消除了寻找剩余空间的串行化。根据Oracle 的测试结果,使用位图freelist 会消除所有分段头部(对资源)的争夺,还能获得超快的并发插入操作。在Oracle9i 之中,Buffer Busy wait 不再常见!
13. control file parallel write-控制文件并行写
当server 进程更新所有控制文件时,这个事件可能出现。如果等待很短,可以不用考虑。如果等待时间较长,检查存放控制文件的物理磁盘I/O 是否存在瓶颈。
多个控制文件是完全相同的拷贝,用于镜像以提高安全性。对于业务系统,多个控制文件应该存放在不同的磁盘上,一般来说三个是足够的,如果只有两个物理硬盘,那么两个控制文件也是可以接受的。在同一个磁盘上保存多个控制文件是不具备实际意义的。减少这个等待,可以考虑如下方法:
减少控制文件的个数(在确保安全的前提下)
如果系统支持,使用异步IO
转移控制文件到IO 负担轻的物理磁盘
14. control file sequential read/ control file single write 控制文件连续读/控制文件单个写对单个控制文件I/O 存在问题时,这两个事件会出现。如果等待比较明显,检查单个控制文件,看存放位置是否存在I/O 瓶颈。
15. direct path write-直接路径写该等待发生在,系统等待确认所有未完成的异步I/O 都已写入磁盘。
对于这一写入等待,我们应该找到I/O 操作最为频繁的数据文件(如果有过多的排序操作,很有可能就是临时文件),分散负载,加快其写入操作。
如果系统存在过多的磁盘排序,会导致临时表空间操作频繁,对于这种情况,可以考虑使用Local管理表空间,分成多个小文件,写入不同磁盘或者裸设备。
16. Idle Event-空闲事件
一般来说,空闲等待是指系统因为无事可做的等待,或者等待用户的请求或响应等,通常我们可以忽略这些等待事件。空闲事件可以通过stats$idle_event 表查询得到。